

CRITICAL MINERAL RESOURCES IN THE MIDWESTERN UNITED STATES

Jamey Jones, U.S. Geological Survey Science Coordinator, USGS Earth Mapping Resources Initiative

U.S. Department of the Interior U.S. Geological Survey

Mineral resources are essential parts of our daily lives

Mineral resources provide many of the essential building blocks of modern society and are vital for human health and safety

- Every year, each person in the U.S. requires more than 39,000 pounds of new nonfuel minerals
- Most of the mineral resources we consume are non-renewable
- Global population is projected to exceed 8.5 billion by 2030, mineral consumption is growing faster than population
- In 3 years, China consumed as much concrete (6.6 gigatons) as U.S. did during the 20th century (4.4 gigatons)

Every American born in 2008 is estimated to use the following amounts of nonfuel mineral commodities in their lifetime

Aluminum (bauxite)	5,677 pounds
Cement	65,480 pounds
Clays	19,245 pounds
Copper	1,309 pounds
Gold	1,567 ounces
Iron ore	29,608 pounds
Lead	928 pounds
Phosphate rock	19,815 pounds
Stone, sand, gravel	1.61 million pounds
Zinc	671 pounds

Source: USGS and US Energy Information Administration

Mineral resources are essential parts of our daily lives

Mineral resource needs have diversified considerably with advances in modern technology

An average smartphone may contain up to 62 different types of metals **Electronics and Circuitry**

Display

A mobile device's glass screen is very durable because glassmakers combine its main ingredient, silica (silicon dioxide or quartz) sand, with ceramic materials and then add potassium.

Layers of indium-tin-oxide are used to create transparent circuits in the display. Tin is also the ingredient in circuit board solder, and cassiterite is a primary source of tin.

Gallium provides light emitting diode (LED) backlighting. Bauxite is the primary source of this commodity.

Sphalerite is the source of indium (used in the screen's conductive coating) and germanium (used in displays and LEDs).

U.S. Department of the Interior U.S. Geological Survey

Banner image courtesy of

The content of copper in a mobile device far exceeds the amount of any other metal. Copper conducts electricity and heat and comes from the source mineral chalcopyrite.

Silicon, very abundant in the Earth's crust, is produced from the source mineral quartz and is the basis of integrated

Arsenopyrite is a source of arsenic, which is used in radio frequency and power amplifiers.

Tantalum, from the source mineral tantalite, is added to capacitors to regulate voltage and improve the audio quality of a device.

Wolframite is a source of tungsten, which acts as a heat sink and provides the mass for mobile phone vibration.

Battery

Spodumene and subsurface brines are the sources of lithium used in cathodes of lithium-ion batteries.

Graphite is used for the anodes of lithium-ion batteries because of its electrical and thermal conductivity.

Speakers and Vibration

Bastnaesite is a source of rare-earth elements used to produce magnets in speakers, microphones, and vibration motors.

> **General Information Product 16** September 20

Global demand for mineral resources increases with transition to green energy

Mineral resource demand is increasing globally in the push toward alternative energy and zero-emission goals

- Some green technologies (EVs, photovoltaics) are more resource intensive than their predecessors
- EVs still require a stable, distributed power grid regardless of power sources
- The path from discovery to production of new mineral resources can take 20-30 years

≥USGS

Total mineral demand for clean energy technologies by scenario. Source: IEA.

USGS provides unbiased science to support decision-making

The **USGS Energy and Mineral Resources Mission Area** leads research and assessment of natural resources in the U.S.

- Energy Resources Program
- Mineral Resources Program

Organic Act of 1879

≈USGS

"examine the geological structure, mineral resources, and products within and outside the national domain"

USGS provides unbiased science to support decision-making

The **USGS Mineral Resources Program** conducts research and assessment of the geologic framework and mineral resources of the U.S.

MINERAL INFORMATION AND INTELLIGENCE

 Analyze present-day and future supply, demand, and global trade for mineral commodities and evaluate mineral criticality

EARTH MAPPING RESOURCES INITIATIVE

• Domestic data acquisition, mapping, and synthesis to characterize mineral resources still in the ground and above ground in mine wastes

RESEARCH AND ASSESSMENTS

 Understand mineral systems and deposits, as well as the impacts of development, and conduct mineral resource assessments

Mapping the Nation's geologic framework and mineral resource potential

16

Decision support to land managers and policy makers

USGS provides unbiased science to support decision-making

The **USGS Mineral Resources Program** engages in international collaboration to improve global understanding and support discovery

The **Critical Minerals Mapping Initiative (CMMI)** is a trilateral partnership between USGS, Geoscience Australia, and the Geological Survey of Canada

1,600 KILOMETERS

sectors and a diversity of high-tech

sidebar).

industries important to global economies

(see Primary Uses of Critical Minerals

Mineral resource production is fundamental to the U.S. economy

Mineral resources are important to the U.S. economy, but we are not self-sufficient

- 2023 estimated value of total nonfuel mineral production in U.S. was \$105 billion, an increase of 4% from \$101 billion in 2022
- Estimated value of U.S. metal mine production was \$35 billion
- Principally from copper, gold, iron ore, and zinc
- Industries that use nonfuel mineral materials— such as steel, aerospace and electronics—created an estimated \$3.84 trillion in value-added products in 2023, a 6% increase from \$3.62 trillion in 2022.

Data sources: U.S. Geological Survey and U.S. Department of Commerce

Exports:

\$25 billion

\$8 billion

Net exports: \$17 billion

Ret Exports of Mineral Raw Materials			
concentrates, and so forth			2
Exports: \$10.6 billion mports: \$5.9 billion Net exports: \$4.7 billion			
	Domestically Processed Mineral Materials		
Domestically Mined	Aluminum, Brick, Cement,		
interar Naw materials	Copper, Fertilizers, Steel, and	alue Added to	
Copper ores, Iron Ore, Sand	P	roduct by Major	
no Graver, Stone, and So forth	Value of shipments: \$890 billion	dustries That	Gr S2
/alue: \$105 billion		increal Materiale	
Domestically Recycled	Net Imports of	aue: 53,640 Dullon	
Netals and Mineral	Processed Mineral		
Products	Materials		
Numinum, Glass, Steel, and so	Metals, Chemicals, and so forth		
/alue of old scrap: \$45 billion	Imports: \$203 billion Exports: \$101 billion		
	Net imports: \$102 billion		
	()		
Scrap			

¹Major consuming industries of processed mineral materials are construction, durable goods manufacturers, and some nondurable goods manufacturers. The value of shipments for processed mineral materials cannot be directly related to gross domestic product.

Economy

56 billion

Domestic Product.

Mineral resource production is fundamental to the U.S. economy

Midwestern U.S. has an active mineral resources sector

Midwestern U.S. has an active mineral resources sector

The U.S. is not self-sufficient in many key mineral commodities

The U.S. is import reliant on many key mineral commodities

In 2023, imports made up more than 1/2 of U.S. apparent consumption for 51 nonfuel mineral commodities, and U.S. was 100% net reliant on 15 of those

Commodity		Net import reliance as a percentage of apparent consumption in 2023	Leading import sources (2019–22			
RSENIC, all forms	100	and a second	China, ³ Morocco, Malaysia, Belgium			
SBESTOS	100		Brazil, Russia			
ESIUM	100		Germany			
UORSPAR	100		Mexico, Vietnam, China, South Africa			
ALLIUM	100		Japan, China, Germany, Canada			
RAPHITE (NATURAL)	100		China, ³ Mexico, Canada, Madagascar			
IDIUM	100		Republic of Korea, Canada, Belgium			
ANGANESE	100		Gabon, South Africa, Australia, Georgia			
ICA (NATURAL), sheet	100		China, Brazil, India, Belgium			
IOBIUM (COLUMBIUM)	100		Brazil, Canada			
UBIDIUM	100		China, Germany, Russia			
CANDIUM	100		Japan, China, Germany, Philippines			
TRONTIUM	100		Mexico, Germany, China			
ANTALUM	100		China, ³ Germany, Australia, Indonesia			
TTRIUM	100		China, ³ Germany, France, Republic of Korea			
EMSTONES	99		India, Israel, Belgium, South Africa			
BRASIVES, fused aluminum oxide	>95		China. ³ Canada, Brazil, Austria			
EPHELINE SYENITE	>95		Canada			
ARE EARTHS. ⁴ compounds and metals	>95		China. ³ Malaysia, Japan, Estonia			
TANIUM, sponge metal	>95		Japan, Kazakhstan, Saudi Arabia, Ukraine			
SMUTH	94		China ³ Republic of Korea, Belgium, Mexico			
OTASH	91		Canada, Russia, Belarus			
TONE (DIMENSION)	87		Brazil China ³ Italy Turkey			
AMOND (INDUSTRIAL) stones	84		India South Africa Russia Congo (Kinshasa)			
	83		South Africa Switzerland Germany Belgium			
NTIMONY metal and oxide	82		China ³ Belgium, India, Bolivia			
NC refined	77		Canada Mexico Peru Republic of Korea			
ARITE	>75		India, China ³ Morocco, Mexico			
	>75		Jamaica Turkey Guyana Australia			
ON OXIDE PIGMENTS, patural and synthetic	75		China ³ Germany Brazil Canada			
	75		South Africa Madagascar Australia Canada			
	74		South Africa, Kazakhetan, Russia, Canada			
	74		Canada			
N refined	74		Peru Bolivia Indonesia Malavsia			
RRASIVES silicon carbide	73		China ³ Brazil Canada Netherlands			
I VER	69		Mexico Canada Poland Switzerland			
OBALT	67		Nonway Canada, Finland, Japan			
ARNET (INDUSTRIAL)	67		South Africa Australia China ³ India			
	60		Chile Canada Germany Kazakhstan			
LIMINA	59		Brazil Australia Jamaica Canada			
	58		Canada Brazil Austria Russia			
ICKEL	57		Canada Norway Finland Russia			
AMOND (INDUSTRIAL) bort arit and dust and powder	56		China ³ Republic of Korea, Ireland Russia			
	52		China ³ Israel Canada Brazil			
	>50		Bolgium China Canada			
DINE	>50		Chile Janan			
	>50		Canada China ³ Israel Taiwan			
	>50		Philippines Mexico Germany Canada			
INGSTEN	250		China ³ Germany Bolivia Viotnam			
	<. n. l					

 $-22)^{2}$

The U.S. has a current focus on "critical" mineral resources

Critical mineral resources are those that are essential to the U.S. economy and national security, have a supply chain that is vulnerable to disruption, and serve an essential function in the manufacturing or a product

- Initiated by Presidential Executive Order 13817 (2018)
- Critical minerals defined by the Energy Act of 2020
- USGS published the first list of 35 critical minerals in 2019 and a revised list in 2021 that contains 50 individual mineral commodities

Revised list individually lists the rare-earth elements and platinum-group elements by specific element forms; added Ni and Zn; removed He, potash, Re, Sr, and U

	United States				World				
Critical mineral Pro	Primary production	Secondary production	Apparent consumption	Net import reliance as a percentage of apparent consumption	Primary import source (2017–20)	Leading producing country	Production in leading country	World production total	Percentage of world total
Aluminum (bauxite)	W		² 3,600,000	>75	Jamaica	Australia	110,000,000	³ 390,000,000	28
Antimony	-	4,100	428,000	84	China	China	60,000	110,000	55
Arsenic	-	-	⁵ 6,800	100	China	Peru	⁶ 27,000	⁶ 59,000	46
Barite	W	-	W	>75	China	China	2,800,000	37,300,000	38
Beryllium	170	NA	200	16	Kazakhstan	United States	170	260	65
Bismuth ⁷		80	810	90	China	China	16,000	19,000	84
Chromium		120,000	590,000	80	South Africa	South Africa	18,000,000	41,000,000	44
Cobalt	700	1,600	6,700	76	Norway	Congo (Kinshasa)	120,000	170,000	71
Fluorspar	NA	-	450,000	100	Mexico	China	5,400,000	8,600,000	63
Gallium	-	-	² 16	100	China	China	420	430	98
Germanium ¹		W	530	>50	China	China	95	³ 140	68
Graphite (natural)	_	-	45,000	100	China	China	820,000	1,000,000	82
Helium ⁸	71	NA	40	E	Qatar	United States	71	160	44
Indium ⁷	_	NA	⁵ 170	100	China	China	530	920	58
Lithium	W	W	⁵ 2,000	>25	Argentina	Australia	55,000	³ 100.000	55
Magnesium ⁷	W	98,000	² 50,000	<50	Canada	China	800,000	³ 950,000	84
Manganese			640,000	100	Gabon	South Africa	7,400,000	20,000,000	37
Niobium		NA	7,000	100	Brazil	Brazil	66,000	75,000	88
Palladium (platinum-group metal)	14	42	90	37	Russia	South Africa	80	200	40
Platinum (platinum-group metal)	4	7	37	70	South Africa	South Africa	130	180	72
Potash	480,000	-	7,400,000	93	Canada	Canada	14,000,000	46,000,000	30
Rare-earth elements9	43,000	-	¹⁰ 6,100	>90	China	China	168,000	280,000	60
Rhenium	9	NA	32	72	Chile	Chile	29	59	49
Scandium		-	NA	100	NA	China	NA	NA	NA
Strontium		-	4,800	100	Mexico	Spain	150,000	360,000	42
Tantalum		NA	710	100	China	Congo (Kinshasa)	700	2,100	33
Tellurium ⁷	w	-	W	>95	Canada	China	340	³ 580	59
Tin	_	10,000	45,000	78	Indonesia	China	91,000	300,000	30
Titanium ⁷	W	W	² W	>90	Japan	China	120,000	³ 210.000	57
Tungsten	1	W	W	>50	China	China	66.000	79.000	84
Vanadium		NA	3,600	100	Canada	China	73,000	110,000	66
Zirconium	1120 000		1130,000	<25	South Africa	Australia	400.000	1 200 000	33

USGS uses a **Mineral Systems framework** to understand and map critical mineral associations

USGS MRP used a mineral systems approach to:

- Identify prospective areas and regions
- Locate key gaps in data coverage
- Guide USGS and State data collection
- Accelerate assessment of critical mineral resources
- Show resource managers and developers where emerging mineralsdependent technologies may create economic opportunities

≊USGS

14

Mineral systems are the geo-tectonic environments in which mineral deposits form

Mineral systems are the geo-tectonic environments in which mineral deposits form

Mineral systems in the midwestern U.S. are diverse and span billions of years of Earth history

Only one current critical mineral producer in the Midwest - Eagle Mine, MI

A few past producers:

- fluorspar, barite (IL)
- tin, tantalum, lithium, beryllium, niobium (SD)
- zinc, germanium, barite (WI)

Hammarstrom and others, 2023, Mineral Systems of the U.S., USGS Fact Sheet 2023-3007

Hammarstrom and others, 2023, Critical Mineral Deposits of the U.S., USGS Data Release

KANSAS Wichita

Region is cored by the North America craton, a stable region of rocks ranging in age from ca. 3.7 to 1.4 billion years old

Complex, overlapping geotectonic systems produced diverse mineral resource potential

Iron ranges (manganese), gold, copper, lead, silver, graphite, zinc, rare earth elements, cobalt, tin, tungsten, lithium,

About 1.1 to 1.0 billion years ago, the Midcontinent Rift split apart the continent's interior and produced major igneous successions around Lake Superior

Duluth Complex (nickel, cobalt, platinum group elements), Eagle Mine and Tamarack deposit (copper, nickel, cobalt, platinum group elements)

Geologic hydrogen potential where MCR is buried to the south

Paleozoic Era (~550 to 250 million years ago) involved deposition of mostly marine basinal sedimentary successions

Marine evaporites have potential for potash, salt, possibly rare earth elements

Thick, extensive black shale successions are rich in phosphate and potentially rare earth elements

Paleozoic Era (~550 to 250 million years ago) involved deposition of mostly marine basinal sedimentary successions

Buried "oddball" intrusions such as Elk Creek carbonatite (NE) host niobium, rare earth elements

Other oddball intrusions include Hicks Dome in southernmost Illinois, also have significant fluorspar potential

Mesozoic Era (~250 to 65 million years ago) involved deposition of mostly marine basinal sedimentary successions in the western Great Plains and Rocky Mountains

Marine evaporites have potential for potash, salt, possibly rare earth elements

Thick, extensive black shale successions are rich in phosphate and potentially rare earth elements

Mesozoic Era (~250 to 65 million years ago) involved deposition of mostly marine basinal sedimentary successions in the western Great Plains and Rocky Mountains

Coal basins have potential for rare earth elements, aluminum (kaolin), gallium, lithium, scandium, vanadium in underclays

Cenozoic Era intrusions in western South Dakota have rare earth element potential

Known critical mineral resources do not necessarily measure critical mineral resources potential

United States is woefully undermapped relative to other countries

Critical elements have not been fully characterized in most mineral systems or known/mined deposits

USGS Earth Mapping Resources Initiative is helping to close data gaps

The USGS Earth Mapping Resources Initiative (Earth MRI) is modernizing the nation's geoscience data

Established in 2019 as a **partnership between the USGS and State geological surveys** to modernize the Nation's mapping related to mineral resources

Collects fundamental geoscience data including:

Airborne geophysical surveys (magnetic, radiometric, electromagnetic)

Hyperspectral surveys (airborne, drone, ground)

High-resolution elevation (lidar) surveys

Detailed geologic mapping and geochemical surveys by State geological surveys

Mine waste characterization with State partners

Preservation of minerals data

Annual appropriation of **\$10.8 million**, an additional **\$320 million** over 5 years through the Bipartisan Infrastructure Law

Has since expanded to multiple partners and stakeholders (including DOE, NASA, Tribes, and the private sector) and applications that include mine waste, energy, groundwater, natural hazards, and other vital geoscience issues

The USGS Earth Mapping Resources Initiative (Earth MRI) is modernizing the nation's geoscience data

The USGS Earth Mapping Resources Initiative (Earth MRI) is modernizing the nation's geoscience data

Summary

- National and global initiatives toward sustainable development, green energy, and zero emissions have distinct mineral resource requirements
- Critical mineral resources are those for which supply chain risks are significant and the U.S. is important reliant
- The midwestern U.S. currently produces multiple mineral commodities including some presently considered critical (nickel, cobalt)
- The midwestern U.S. also has known or suspected potential to host many other critical mineral commodities, and the USGS is working to assess domestic resource potential
- A number of challenges limit mineral resource exploration and development in the U.S., including incomplete or imprecise geological and geophysical information
- USGS is working to fill key geoscience gaps with new data collection, mapping, research, and synthesis through the Earth MRI program and international collaboration

Contact information

Jamey Jones Earth MRI Science Coordinator jvjones@usgs.gov

https://www.usgs.gov/programs/mineralresources-program

https://www.usgs.gov/special-topics/earthmri

https://ngmdb.usgs.gov/emri/#3/40/-96

Big Erick's crossing, Huron River, Michigan Photo credit: Jamey Jones, USGS