

Public geoscience to support critical minerals discovery

Christopher Lawley

Research and technology key

Mineral development cycle

- Mineral development flows from exploration to discovery to mining
- Public geoscience supports exploration at the start of the development cycle
- Sustainability requires progress towards circular development

Critical minerals lists

- New list of 34 minerals released in 2024
- Policy tool to focus R&D and investment
- How does Canada define "criticality"?
- (1) Supply chain risks
- (2) Economic and security
- (3) Climate action
- (4) Critical for partners

Minerals versus materials

- Critical "minerals" are better described as materials
- Critical mineral lists evolving to include more synthetic materials (e.g., Silicon metal)
- Downstream applications determine the most prospective geological sources of materials

High-purity quartz sand is feedstock for glass but not semiconductors

Diversifying critical mineral supply

- At least three strategies:
- (1) Invent substitute materials(e.g., AI at UC Berkeley)
- (2) Identify new ways of mining secondary or unconventional sources (e.g., waste)
- (3) Invest in mineral exploration to discover new primary sources of critical minerals

What does exploration do?

- Mineral exploration in Canada is dominated by gold, uranium, copper, nickel, zinc, lead, iron
- More recent focus on critical minerals, but gold is still dominant
- Most expenditures occur in Ontario, Quebec, and British Columbia

How are discoveries made?

- Discovering a mineral deposit typically involves multiple methods
- Prior to 1940, prospectors discovered over 50% of mineral deposits
- Since 1940, geochemistry, geophysics, and new conceptual models have become important for discovering buried deposits

1 in 1000 discoveries become a mine

- Expensive and slow
- Working in remote and challenging environments
- Discovery rates and grade are declining

What is public geoscience?

- Geological Survey of Canada founded in 1842, before confederation!
- Minerals, hazards, groundwater, environmental geoscience
- Geoscience as a public good, accessible to all

Evolving role of GSOs

 The roles, responsibilities, and methods of geological survey organizations (GSOs) have evolved since 1842

Value proposition

- Each \$1 spent attracts \$5-7 of private sector expenditure (Duke, 2010)
- Reduces risk, attracts investment, and makes exploration more effective
- Support policy development and public health

Geologists work at multiple spatial scales and in deep time

- Must work with other jurisdictions to get complete picture (10,000s occurrences)
- Multiple geological sources for each commodity

Mineral systems

- Mineral deposits require multiple things to happen at the same time and place
- Together, the required pieces are part of a mineral system
- Like all systems, they don't work if one piece is missing

Conceptual mineral systems models

- The biggest part of our mineral programs is developing conceptual models
- This requires fieldwork at mineral deposits and a wide range of other tools
- New models support targeting and open new search spaces

Conceptual model for Li formation water in Saskatchewan. Knowing the source is critical for targeting.

"Young" basins

- Western Interior
 Seaway deposited
 rocks famous for
 oil, gas, and coal
- Older Paleozoic basins famous for potash
- High potential for critical minerals such as helium and lithium

"Young" basins as unconventional

sources

- REE as by-products from coal processing
- Li within formation waters (e.g., DLE)
- Research needed to assess potential and to invent processing methods

"Old" shield

- Precambrian rocks represent diverse geological settings
- Deformed and metamorphosed
- Magmatic Ni-Cu-PGE;
 Li pegmatite; Graphite;
 High-purity quartz
- Sedimentary basins for Zn, Pb, fluorspar

Dozens of mineral systems

Mineral systems and their critical minerals

- 01. Magmatic sulphide (Ni, Cu, PGE, Co)
- 02. Mafic intrusion-hosted (V, Ti)
- 03. Kimberlite-hosted (diamond)
- 04. Carbonatite (REE, Nb)
- 05. Apatite intrusion (P, REE)
- 06. Pegmatite (NYF; Li, Nb, Ta, Cs, Be)
- 07. Iron oxide-apatite (IOA; Fe, REE)
- 08. Iron oxide-copper-gold (IOCG; Cu, Au, Co, U, Mo, Re)
- 09. Sediment-hosted, unconformity-related (U)
- 10. Epithermal (Ag, Au, Hg, Bi, Te, Re)
- 11. Porphyry (Cu, Mo, Au, Bi, Te, Se, Re)
- 12. Nodules and crusts (Mn)

- 13. Volanic massive sluphide (Cu, Pb, Zn, Au, Ag, Ga, Ge, In, Sb)
- 14. Mafic- to ultramafic cumulate (Cr, PGE)
- 15. Erosional deposits (Zr, REE, Sn, Au, PGE, diamond)
- 16. Laterite (Fe, Ni, Co)
- 17. Intrusion-related skarn (Cu, Fe, Sn, W, Mo),
- 18. Intrusion-related greisen (Zn, Pb, Sn, W, Mo)
- 19. Pegmatite (LCT; Li, Nb, Ta, Cs)
- 20. Metamorphic graphite (C)
- 21. Orogenic gold (Au, Ag, Sb, Hg)
- 22. Mississippi Valley-type (MVT; Zn, Pb, Ga, Ge, In, Sb)
- 23. Clastic-dominated (CD; Zn, Pb, Ga, Ge, In, Sb)

Conceptual to mappable

 Conceptual models identify the key ingredients that then need to be mapped

Mineral intelligence

 Combine data for each mineral systems component

- Use areas of known mineralization to train machine learning models
- Model reduces the search space by 90%, but that is not enough on its own!

Mineral intelligence

<u>Three</u> components to mineral intelligence at the GSC:

- (1) New public geoscience
- (2) Apply AI to do more with existing public geoscience data
- (3) Advance AI to improve the reliability of predictions

Models available at: www.geo.ca

Family of national prospectivity models trained on public geoscience (Lawley, Parsa, and Zhang)

 Moving towards deep learning, self-supervised learning, and foundation models

Doing more with what we have

- Apply AI to improve data processing and 3D modelling (Hillier et al. 2024)
- Apply NLP and LLMs to extract more information from geological map databases (Lawley et al. 2023)
- Graphs to embed stratigraphic knowledge into models

Nodes represent lithostratigraphic names across Canada. Edges represent connection strength (Lawley et al. in prep) 25000

International collaboration

Unlocking critical mineral potential

- Building a pre-pre-feasibility tool that combines economic and infrastructure data to predict net present value (NPV) of critical mineral deposits
- Combine mineral potential and economic models with ESG principals using multi-criteria optimization to support landuse planning

NPV for a "small" (\$0.25B) and "large" (\$4B) deposits based on their proximity to infrastructure (Li, Chokshi, Lawley, Thompson)

Conservation priorities

- Must conserve 30% of land and sea by 2030
- Must balance conservation priorities with mineral potential
- Need data-driven decision making

Data gaps and quality

- Data availability and quality highly variable
- Quality of decisions depends on the quality of the data

Sedimentary and Metamorphic

coarse siliclastic uartzite

Metamorphic

paragneiss amphibolite

granulite migmatite chamockite

alkalic intrusive

ultramafic intrusive

Conclusions

- Public geoscience provides baseline data that is accessible to all
- De-risks exploration and supports policy
- Midwest has high potential for critical minerals both from conventional and unconventional sources

NRCan Critical minerals publication database data on www.geo.ca

Resources

Bedrock geology

Geochronology

Surficial geology

Geochemistry

•

Geophysics

Geospatial data

Canadä